SEMEN QUALITY AND EGG HATCHABILITY IN LOCAL TURKEY FED DIETS CONTAINING MORINGA OLEIFERA AND GONGRONEMA LATIFOLIUM LEAF MEAL

ABSTRACT
The experiment was conducted to determine semen quality, fertility, egg hatchability and some biochemical parameters in Nigerian local turkey toms fed diets containing Moringa oleifera (MO), Gongronema latifolium (GL) leaf meals and their combinations. A total of 72 Nigerian local turkeys comprising of 54 males and 18 females were used for the study. The males were randomly divided into 9 treatment groups, each treatment was replicated 3 times with 2 toms per replicate. The treatment diets were given only to the toms, starting from three month of age through the experimental period. The experimental animals were fed and given water properly, twice a day without restriction. All the management practices were carried out to the best of ability. The males in all the treatment groups were weighed weekly to determine their daily and weekly body weight gain. At 26 weeks of age, toms were trained for semen collection, and 32 weeks of age, semen was collected using abdominal massages. Samples were analyzed for colour, volume, progressive motility, sperm concentration, viability and sperm morphology. Fresh semen sample were also collected per treatment in vials’ stored in ice block and analyzed for fructose, Na and K. A total of 18 hens were randomly shared 2 per treatment corresponding to the 9 treatments. Pooled Semen from each treatment was used to inseminate the hens twice a week at the beginning of egg lay and once a week subsequently. A total of 225 eggs were collected and incubated in weekly batches, analyzed for fertility and hatchability. The result revealed that M. oleifera and G. latifolium leaf meals had significant (P<0 .05="" 0.58ml="" 3kg="" at="" best="" conc.="4.82(x10/ml <sup" effects="" ejaculate="" fed="" m.="" measured.="" motility="92.93%," oleifera="" on="" parameters="" quality="" result:="" semen="" the="" tom="" volume="" yielded="">9
), live sperm= 94.13%, normal sperm 91.38% and corresponding lower values for percentage dead and abnormal sperm. While, G. latifolium treated toms had a lower value for their semen quality parameters when compared with the control group. Interaction effects of M. oleifera and G. latifolium leaf meals were significantly (P<0 .05="" 1.5kggl="" 1.5kgmo="" 16.99="" 19.12="" 3kg="" 3kggl="" 3kgmo="" 83.33="" 88.39="" a="" and="" at="" being="" compared="" concentration="" control.="" control="" corresponding="" dead-="" dead="" decrease="" diet="" diets.="" diets="" different.="" eggs="" embryos="" fed="" fertile="" for="" fructose="" greatly="" had="" hatchability="" hatched="" higher="" however="" improved="" in-shell="" in="" inclusion="" increased="" infertile="" kggl="" lower="" mg="" ml="" mo="" of="" parameters="" percent="" quality="" reduced.="" reduced="" respectively.="" respectively="" semen="" seminal="" severely="" shell="" significantly="" similarly="" than="" the="" their="" these="" to="" toms="" traits="" u="" values="" was="" were="" with="">+2.76) at 3kgGL when compared with the control, but M. oleifera had a negligible increase in fructose concentration. However, M. oleifera fed toms (3kg) had a significant(P<0 .05="" 0.35="" 1.5kg="" 1.5kgmo="" 3kg="" 3kgmo="" achieved="" and="" at="" be="" but="" can="" caused="" combination="" concentration="" diet="" eggs="" embryo="" fertility="" g.latifolium="" hatchability="" improved="" in="" increase="" k="" kg="" kggl="" latifolium="" local="" m.="" mortality="" na="" nigerian="" of="" oleifera="" percent="" rate="" reduced="" reduction="" respectively.="" result="" span="" suggest="" that="" the="" these="" treatment="" turkey.="" using="" with="">
CHAPTER ONE
INTRODUCTION
1.1.     Background of the study
In Nigeria, poultry industry is once again experiencing growth due to the current regime’s effort at encouraging investments in the industry through several economic and agricultural policies and reforms including removal of import duties on agricultural products (Fasina et al., 2007). Notwithstanding, the current trend in growth within the industry it is still experiencing challenges as some species of poultry are left out. For instance, turkey production has not been as successful as chicken production in Nigeria. Its production is largely at the small holder level. This has been attributed to high cost of feed, inconsistencies in feeding program as well as lack of information on its nutritional requirements (Ojewola et al., 2002). Also, reproductive problems experienced under natural mating conditions, low fertility and poor hatchability as a result of poor quality semen due to oxidative stress amongst other factors (Bucak et al., 2010) militate against turkey production in Nigeria. This situation is also evident from the FAO report (FAOStat, 2011), which shows that the population of local turkeys in Nigeria is only about 1.05 million, being the smallest when compared with other poultry species. It is important to come to terms with the fact that advancement in the industry depends on the use of birds with high reproductive rate, adoption of better mating methods, use of high quality semen in insemination as well as good nutrition.

According to Donoghue and Donoghue (1997), avian spermatozoa are rich in polyunsaturated fatty acids (PUFA) which makes them vulnerable to lipid peroxidation especially during in-vitro manipulation. In particular fatty acids are the most vulnerable to lipid peroxidation. Generally, some features of avian semen have also been found to put it under pressure of oxidative stress. For instance, there is limitation in antioxidant recycling, because of very low activity or even absences of hexose mono-phosphate shunt in avian spermatozoa (Sexton, 1974). Also, the low production of NADPH (the coemzymes for glutathione reductase) has been implicated as a factor in reducing fertility of avian sperm. There are also observations that leukocyte contamination of the semen is responsible for increased generation of free radicals which affect the performance of turkey sperm (Halliwed and Gutteridge, 1999). Furthermore, the activity of antioxidant enzymes in turkey spermatozoa is also lower compared to that of chicken and this makes turkey sperm more vulnerable to the problem of peroxidation (Aitken, 1999). Worthy of note, is the fact that turkey spermatozoa are very dependent on oxidative metabolism to maintain optimal ATP level needed for sperm metabolism (Wishart, 1982). Therefore, any damage resulting from these discrepancies may leads to alteration of the membrane irreversibly, thereby affecting sperm function and fertilizing ability. In effect, antioxidant protection is thus absolutely vital for maintaining the fertility of turkey spermatozoa.

Studies have revealed how the reproductive efficiency of male breeder can be affected by a variety of factors such as breeding methods, environment (daily photoperiod, temperature housing, and nutrition) and frequency of semen collection and technique of artificial insemination (AI), especially in turkey (Sexton, 1983 and Lake, 1984). In addition, these authors have stressed the importance of evaluating the semen prior to insemination to improve the reproductive efficiency. Antioxidants have been reported to be efficient in diminishing lipid oxidation in avian spermatozoa which is a major factor in reduction of fertility. Worthy of note is the fact that natural antioxidant has the ability to increase the antioxidant capacity of the seminal plasma and reduce the risk of certain deleterious free radicals on sperm fertilizing ability (Chanda and Dave, 2009). Dawson et al. (1990) reported that the antioxidant properties of ascorbic acid are essential in maintaining the membrane and the genetic integrity of sperm cells by preventing oxidative damage to the sperm DNA. Also, studies have shown that antioxidants especially those of plant origin such as Moringa oleifera and Gogronema Latifolium have greater application potential for therapeutic and reproductive uses.

Moringa Oleifera plant in the family of Moringacea is native to India, naturalized in tropic and sub-tropical areas of the world (Price, 2002). It is widely distributed and cultivated in the northern part of Nigeria and it is called Zogale in Hausa. The plant is characterized as fast growing and drought resistant with an average height of 12 meters at maturity (Fuglie, 2001). All parts of the moringa tree is said to have beneficial properties. Nutritional analyses by Gopalan et al. (1989) and Fuglie (2001) indicate that Moringa leaves contain a wealth of essential amino acids, vitamins and minerals with higher values in their dried form than in its fresh form, except for vitamin C which is high in its fresh leaves. Fuglie (1999) also reported some specific plant pigments with demonstrated anti oxidant properties such as carotinoids, lutein, alpha-carotine, beta-carotine, xanthins and chlorophyll. Other phytochemicals contained in moringa which have powerful antioxidant ability include kaempferol, queretin, rutin, kaffeoylquinic acids, vitamins A, C and E, some valuable micro nutrients such as selenium and zinc are also found in the leaves of Moringa......

For more Animal Science Projects click here
================================================================
Item Type: Project Material  |  Size: 107 pages  |  Chapters: 1-5
Format: MS Word   Delivery: Within 30Mins.
================================================================

Share:

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Search for your topic here

See full list of Project Topics under your Department Here!

Featured Post

HOW TO WRITE A RESEARCH HYPOTHESIS

A hypothesis is a description of a pattern in nature or an explanation about some real-world phenomenon that can be tested through observ...

Popular Posts